Augmentation mammaire forum qgis tutorial

AM : prothèse qui ne descend pas après 6 mois. Augmentation mammaire avec des Motiva Ergonomix cc. Douleurs depuis 11 mois help! Changement de prothèses et asymétrie. Seins tubéreux? Implants mammaires devant le muscle. Augmentation mammaire et la pilule contraceptive. Remplacer implants mammaires par plus petits. Help, prothèse mammaire très visibles faisant des plis Avis prothèses mammaires cc cc. Prix augmentation mammaire.

Prothèse haute, forme pectoraux. Boule dur apres opération. Douleur sein gauche après AM. Changement de prothèses mammaires pour plus petit. Forum Questions Vidéos Avant et après Articles Dernier commentaire: 20 juil. Il existe 4 types de cicatrices concernant la plastie mammaire : incision axillaire sous les aissellesQuel type de prothèses choisir : rondes ou anatomiques?

Exemples : Motiva, Mentor, La question de CC est probablement l'une des décisions les plus compliquées à prendre après avoir choisi Nous voulons savoir pour quelle technique vous avez opté avec le chirurgien et pourquoi?

Vous a t-il été recommandé? L'avez-vous trouvé en cherchant des recommandations sur internet? Does it also reinforce or construct new divides? Or, write an expanded essay based on the in-class assignment for Week 10 the memoir fragment. Due one week after the last class.

How has engineering ingenuity shaped the emergence of new types of citizens, consumers, and entrepreneurs? In-class assignment: Small group work on questions that center on the relation of technology and modernity What are some responses to technological modernity, as represented in the novel?

In what ways are these responses ambivalent cultural and emotional? How does technology evoke both anxiety and desire? Identify examples to support your responses. Produce a visual aid based on your discussion to share with the class. In-class assignment: Small group work on questions that include: How do mass media technologies help to generate local, regional and global imaginaries?

What are some of the similarities and differences between specific kinds of technology and the communities that they create and facilitate? Consider for example, print capitalism in relation to digital or cable television, online newspaper sites, Facebook, Twitter etc. In-class assignment: Read article below on covert digital scanning of bust of Queen Nefertiti at Neues Museum in Berlin by artists Nora Al-Badri and Jan Nikolai Nelles, who also released the scan for free access and use.

MIT Press, Argues that the pervasiveness of mobile devices has displaced focused conversation and diminished human capacity for empathy. In-class assignment: In small groups, consider the following questions and find examples — in both the assigned texts and beyond - to support your responses: How do innovations in voice technology produce change on the level of the individual, the everyday, and the broader culture?

Do new technologies render old ones obsolete? What constitutes humanity and has electronic communication replaced these things? Consider the significance of the Go match in relation to questions that include: Is it important to define humanity through our difference from machines?

Why or why not? Is industrial modernity still defined through the intellectual separation of humans and machines? Why are people drawn to the replaying of the intersection between humans and machines? How does technology facilitate the production of new forms of connectedness, belonging, and agency? How has technology provided a critical framework for reassessing global history and world systems e.

In-class assignment: Read the Oculus Rift review below. Discuss how technological innovations also involve the production of social difference, but also of standards and norms. The New York Times, March 28, Explores notions of community and inclusiveness in internet comment culture. In-class assignment: In small groups, research and discuss a contemporary protest movement frequently associated with social media, such as the Arab Spring, the May 15 Anti-Austerity Movement in Spain, or Occupy Wall Street.

Considers impact of digital communications on news reporting and entertainment conventions. In-class assignment: Consider the intersections of technology, financial markets and world trade. Some discussion questions: Is the I. Revolution synonymous with globalization? How do arguments on globalization from the early s relate to those in the past five years?

Working in small groups, take divergent or overlapping positions on the issues below and hold a debate. Issues: Do social media enable new freedoms or generate new forms of conscription?

What are the expectations? Who is accountable for ensuring a climate of trust? Tracking vs research and information. Analyzes experience as mediated rather than natural. Autobiographical essays that explore emotional and intellectual connections with objects.

In-class assignment: Select a specific object and consider its role in your life. Foresight in business enables decision makers to spot emerging opportunities and threats early and develop innovative responses to serve changing needs.

To do so, the course will first detail the history of foresight and future studies, where it comes from, how it is embedded into organizations, etc. A large range of supports will be used starting from concrete cases of foresight studies till the use of fictions to anticipate and plan. Foresight in organizations? Where is it placed in the organizational chart? What can be the diverse positions?

Presentation 1 : Foresight in cities or regions. Based on concrete examples, explain the different positions and foresight outcomes in territorial policy making. Presentation 2 : Foresight in parliament. Based on concrete examples, explain how parliament use or have used foresight US, France, etc. Presentation 3 : Foresight in large companies. Lead user method, Roadmapping, Ideo Deep dive, Wheel of the future, Episteme, Trend analysis, weak signal detection, etc. Presentation 6 : Compare books on weak signal detection The Black SwanThe signals are talkingor others.

Presentation 7 : Identify weak signals on health and present them. Innovation catalog, Delphi, Back-casting, Under constraints foresight, participatory foresight, etc.

Presentation 8: Use the innovation catalog method on smart city. Presentation 9 : Compare different uses of Delphi to conduct foresight e. Global risks report, etc. Presentation Compare different participatory foresight cases St Nazaireetc.

Presentation Future of war, compare different types of foresight approaches to address the question of future of war. Presentation 12 : Identify variables, cluster them, and write 3 Variable descriptions for a scenario exercise on the future of data protection.

Presentation 14 : Read past foresight scenario reports and identify what they had anticipated, what remained blind spots. Building the scenarios based on hypotheses, identifying implications, leveraging the scenario in action.

How do they leverage the scenarios? Presentation 19 : Analysis of the project Politique fiction? What are the limits and advantages? Presentation 20 : Augmented humans. Based on the analysis of different books and movies, what can we learn about augmented humans that could be of interest for business and society today?

Presentation 21 : Past and future of future studies. What is the place of imagination in anticipating the future? Presentation 22 : How foresight can be learnt, shared and brought to business? Compare singularity university, SOIF, etc. Presentation 23 : What do you think will be the future of foresight in the big data era? The role of betting and voting? Presentation 24 : Singularity, a critical analysis of the concept. Presentation 25 : Afrofuturism, Foresight in India or China?

Based on my work at AXA, I will show students how foresight can be organized, what it delivers, etc. Société de l'information et société de la désinformation L'intelligence économique aspire à comprendre — et influer sur — notre environnement économique ou géopolitique.

Ce sont les verbes déstabiliser, espionner, mettre sous influence… mais aussi veiller, anticiper. Programme prévisionnel 1. Disciplines majeures : économie et finance. Disciplines majeures : économie, histoire, sociologie 4. Disciplines majeures : droit, criminologie, économie.

Cyberguerre : acteurs, motivations, organisation, financement et enjeux socioéconomiques. Du risque informationnel au cyber-conflit. Les acteurs des écosystèmes numériques fermés et le mirage de la néphologie cloud computing et du Big Data. Disciplines majeures : informatique, cryptologie, traitement du signal, économie. Écoutes téléphoniques, interceptions numériques et imagerie satellitaire. Disciplines majeures : économie, informatique, électronique, mathématiques.

Disciplines majeures : sciences politiques, informatique, sociologie, psychologie. Soutiens possibles. Disciplines majeures : sociologie, psychologie. Disciplines majeures : criminologie, urbanisme et aménagement du territoire.

Migration sur internet. Disciplines majeures : droit pénal, droit sur la propriété des données numériques. Disciplines majeures : gestion, économie, sociologie, informatique. Les absences sont prises en compte selon le barème établi par le département HSS. Les fausses nouvelles diffusées largement sur les réseaux sociaux ont-elles fait élire Donald Trump à la présidence des Etats-Unis?

La prochaine guerre aura-t-elle lieu dans le cyberespace? Les GAFA sont-ils les nouvelles puissances des relations internationales? Comment le numérique transforme-t-il le rapport des sociétés nationales et internationales à leur histoire, leur mémoire et leurs droits fondamentaux? Il adoptera une approche pluridisciplinaire et interrogera les champs des relations internationales et des études de la guerre. Ce cours passera en revue l'ensemble des méthodes aujourd'hui mobilisées par un large nombre d'acteurs pour construire une observation empirique des populations et sociétés, avec un focus particulier sur les méthodes quantitatives à l'aide d'un corpus de textes proposant un retour critique sur chacune de ces méthodes, ainsi que de l'étude de cas emblématiques.

Le cours permettra ainsi aux étudiants de se familiariser aussi bien avec les principes méthodologiques au fondement des grandes enquêtes de la statistique publique, de l'usage des données administratives, des enquêtes par quota menées par les instituts de sondage ou encore des avancées plus récentes liées aux usages des traces numériques big data. Responsable: Jérôme Sackur E-mail : jerome. Quels sont les mécanismes qui permettent la reconstruction de cet objet et de le reconnaitre?

Quelle est la part de la dynamique du mouvement et des informations de formes dans ce processus? La perception du champ visuel droit et gauche est assurée par les hémisphères gauche et droit, respectivement. Le projet vise à quantifier cette observation et à identifier les constantes de temps mise en jeux. Bien que les yeux bougent sans arrêt 3 saccades par secondeces mouvements sont largement non-conscient, et souvent perturbés dans nombres de pathologies.

A long terme ce projet vise à développer des applications cliniques pour le diagnostic et la remédiation de troubles oculomoteurs. La taille de la pupille varie en fonction de l'illumination de la scène, mais reflète aussi des fonctions cognitives telles que l'orientation de l'attention.

En effet, lorsqu'on prête attention à un objet lumineux placé en périphérie, la pupille se rétracte par rapport à la situation où l'objet auquel on prête attention est sombre. L'oscillation de la luminance sombre-clair à une certaine fréquence induit des oscillations de la pupille jusqu'à 3Hz environ.

Il est possible de présenter différents objets dont la luminance oscille à différentes fréquences, et de déterminer celui auquel le sujet prête attention et regardant l'amplitude des fréquences dans une décomposition de Fourier du signal pupillaire - une technique appelée "frequency tagging". L'objectif de ce stage est de déterminer les contraintes spatiales de ce frequency tagging de manière à exploiter la réponse pupillaire comme mesure attentionnelle.

Ce stage comprend toutes ou une partie des étapes suivantes: la mise en place du protocole expérimental, programmation de l'expérience matlabformation à l'utilisation d'un oculomètre et aux méthodes psychophysiques pertinentes pour récolter les données, analyse des données.

Une manière traditionnelle d'étudier cela en sciences cognitives consiste à questionner à intervalles irréguliers des participants pendant qu'ils et elles effectuent une tâche la lecture d'un texte rébarbatif par exemple afin de déterminer si et quand leur pensée vagabonde.

Le projet serait la première étape d'un autre approche, consistant à déterminer pour chaque sujet un "biais d'alternance" entre deux tâches. Pour ce faire, il faudrait concevoir une tâche bi-partite qui pourrait prendre ensuite la forme d'un jeu vidéo, dans laquelle les participants devraient répartir leur attention sur deux sous-tâches deux parties de l'écran.

Il faudrait concevoir une contrainte telle que, en fonction des performances de chacun-e, nous puissions déterminer le taux d'alternance optimal, qui ne serait pas accessible au sujet. Nous pourrons alors mesurer le biais de chaque sujet par rapport à ce taux optimal. Ils demandent de bonnes connaissances en algèbre linéaire ou statistique ainsi qu'en programmation.

Deep Neural Networks DNNs have recently exemple menu regime sans residu ground on state-of-the-art in several areas image recognition, speech recognition, etc. However, these algorithms depend on large human annotated data sets. Yet, infants spontaneously achieve similar performance without direct supervision; the internship explores various ideas to 'de-supervise' deep learning using side information, loss functions or architectures inspired by research in human infants.

Recurrent networks can be used to learn regularities in video or audio sequences. This internship will use a game engine to learn the underlying physical regularities of interactions between macroscopic objects and compare it to results of infant's perception of possible versus impossible events.

It will be conducted in collaboration with Facebook AI Research. Speech perception is invariant with respect to large variations in speech rate.

How is this achieved? The internship will explore time normalization using various computational architectures for speech recognition convolutional coding, networks of oscillators, etc. Speech prosody is the 'melody' and 'rhythm' of language, and infants are very sensitive to it. We think that it provides bootstrapping into linguistic structures at many levels lexical, grammatical. The human language faculty is unique in its ability to combine a finite number of categories to express infinitely varied meanings.

The internship addresses how the basic constituents of langage categories and rules could be learned during infancy focusing on two ideas: extracting proto categories and rules from the sensory inputs using clustering or sparse coding techniquesand using mutual constraints linking the different levels of linguistic structures. At four months of age, infants recognize a few very common words their names, mommy, daddy, etceven though they are unable to produce them. This internship tests whether multimodal DNNs can simultaneously learn words and their approximate meaning on a parallel data set of audio and video tracks This internship will be conducted in collaboration with Microsoft Research at Redmond, USA.

Big baby data is essential to uncover the mysteries of early language acquisition. How does the brain encode speech sounds? Progress in neuroimaging ECoG, intracerebral electrical recording, etc have resulted in a flow of databoth in human and animals. The internship will apply neural decoding methods and apply to neural data and data generated from deep neural architectures to explore hypotheses about the neural code for speech.

Passer au contenu principal. Panneau latéral. Vous êtes connecté anonymement Connexion. Résultats de la recherche: Afficher 20 par page. Catégorie: Digital. Data Science Starter Program 6 Orange. Data Science Starter Program 8 Orange. Catégorie: Summer Schools - Écoles d'été. BIO - Cell Biology Catégorie: Bachelor 2.

BIO - Molecular Genetics Molecular Genetics BIO provides an in-depth understanding of the mechanisms by which living organisms store, express and transmit genetic information and the basis of human genetic diseases.

Lectures will cover a range of topics, including the molecular aspects of DNA replication and transcription, translation of RNA into protein and gene regulations. This course will also cover the latest methodologies used in genomics analysis, like DNA sequencing.

The intention is to allow students to develop their knowledge in the subject area, to acquire sound scientific reasoning, and to combine the modern techniques in molecular genetics with computer-assisted data analysis.

BIO - Biologie cellulaire et développement Cell Biology and Development. Catégorie: Ingénieur 2A. BIO - Génomes : diversité, environnement et santé humaine Génomes: diversité, environnement et santé humaine Au cours de la dernière décennie, en réduisant drastiquement le coût du séquençage de l'ADN et de synthèse, les sciences de l'ingénieur ont révolutionné la recherche biologique.

Les microbes de notre tube digestifs dictent ils nos conduites? Comment à émerger la complexité du vivant? Quels sont les déterminants génétiques du cancer? Quels sont les risques de la génomique et de la biologie synthétique?

BIOB - Travaux expérimentaux en imagerie quantitative On top of the experimental techniques of biology and biochemistry, applied mathematics, computer science or physics are increasingly mandatory for the quantitative study of a biological question. In particular, imaging through fluorescence microscopy and the automated analysis of the resulting acquired images play a crucial role in the study of dynamical phenomenon in vivo.

Following that spirit, we will look at cell growth and size homoeostasis in the fission yeast S. Note: this module contains a practical experimental biology part as well as a computational part in Python. Personalized Reconstitution of the Tumoral Process This course is fully performed in the lab of Alexis Gautreau on campus.

BIO - Sciences des données en imagerie biologique Data sciences of biological imaging: Image-based quantitative phenotyping Biology is increasingly quantitative. CHI - Chimie inorganique Content and Topics Crystal field theory Ligand field theory Hard and soft Lewis acids and bases concept Metal oxidation states, redox chemistry and electron transfer Topics of current interest in inorganic chemistry Bibliography Miessler, G.

Inorganic Chemistry; 5th ed. Shriver, D. F et al. Inorganic Chemistry; 6 th ed. Freeman, Cotton, F. Advanced Inorganic Chemistry; 6 th ed. House, J. Descriptive Inorganic Chemistry; 3 rd ed. CHI - Inorganic Chemistry CSE - Computer Programming Computer programming CSE introduces students with or without previous programming experience to the fundamentals of computer programming in Python, with applications across the sciences.

In this course, students will explore fundamental algorithms and data structures, up to and including binary trees, using a mixture of procedural, recursive, and object-oriented techniques. Upon completion of this course, students will have a solid foundation in the culture and practice of modern programming, and the basic skills to solve real-world problems using efficient, well-written programs and open-source tools.

Catégorie: Bachelor 1. Data analyst SFR 1. Data Science Starter Program Data Science Starter Program 9. Responsable: Denis Oblin Catégorie: Master 2. DS-telecom-1 - Optimization for Data Science Evaluation Labs. Aditional Books and resources Book 1. Catégorie: Master 2. Modalités de contrôle Contrôle continu en début de session travaux pratiques, et évaluation finale sur machine.

Practical introduction to deep learning Deep Learning has become a widely used term in the world of artificial intelligence, thanks to rapid and significant advances in voice recognition, computer vision, and natural language processing. Program This course covers practical techniques of optimization deep neural networks. Students will be able study and implement advanced learning models on complex datathrough the following techniques and tools: Libraries Numpy, TensorFlow, Keras optimization techniques, transfer and regularization Understanding of classical model architecture and state of the art In particular, students will implement methods for the following applications: Image analysis through deep convolutional networks; language analysis by unsupervised learning of representations of words and recurrent networks; other applications such as recommendation engines, generative models … Audience and prerequisites This course is for students who have already studied Machine Learning.

Methods of control Continuous assessment at the beginning of practical work session, and final evaluation coding session.

Augmentation mammaire graisse embrayage usé

DS-telecom - Multi-object estimation and filtering DS-telecom-9 - Data Camp Day 1: Data wrangling - Advanced course on Pandas - Tidy data - Lab on MovieLens data set - Challenge and getting started with RAMP Day 2: ML Pipelines and hyperparameter search - Column transformer and pipelines - Bayesian optimization and hyper parameter search - Learning curves Day 3: Metrics and dealing with unbalanced data - Presentation of the different ML metrics - Problem of the metric with unbalanced data - ML approaches to deal with imbalanced data Day 4: Ensemble methods and feature engineering - Gradient Boosting - Stacking - feature engineering Day 5: Model inspection - partial dependence plots - feature importance Challenges Besides the students will compete during the week on a data challenge.

ECO - Introduction to Econometrics ECO - Capstone Project ECO Capstone project The capstone project will be undertaken throughout the first year of the degree. Evaluation will be based on a oral presentation and written thesis.

ECO - Econometrics I Course taught in English. Course taught in English This course will concentrate on the study of regression analysis using the linear model, starting from the univariate case, extending the presentation to the multivariate case.

The field of urban economics introduces space into economic models in order to study the location of economic and social activity.

It is based on the definition of urban areas, which combines both a minimum density criterion and aminimumpopulation criterion. Those three levels are intertwined: for example, location patterns within an urban area -determining access to facilities, suppliers, workers, etc.